3.36 Using the style of drawing in Figure 3.66, draw a picture of a PLA programmed to implement $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\sum m(1,2,4,7)$. The PLA should have the inputs x_{1}, \ldots, x_{3}; the product terms P_{1}, \ldots, P_{4}; and the outputs f_{1} and f_{2}. Solution:

$$
f=\sum m(1,2,4,7)=\overline{x_{1}} \cdot \overline{x_{2}} \cdot x_{3}+\overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}}+x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}}+x_{1} \cdot x_{2} \cdot x_{3}
$$

3.44 Consider the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \cdot \overline{x_{2}}+x_{1} x_{3}+x_{2} \cdot \overline{x_{3}}$. Show a circuit using 5 two-input lookup-tables (LUTs) to implement this expression. As shown in Figure 3.39, give the truth table implemented in each LUT. You do not need to show the wires in the FPGA.
Solution:
$f=x_{1} \cdot \overline{x_{2}}+x_{1} x_{3}+x_{2} \cdot \overline{x_{3}}$

x_{1}	x_{2}	$f_{1}=x_{1} \cdot \overline{x_{2}}$
0	0	0
0	1	0
1	0	1
1	1	0

x_{1}	x_{3}	$f_{2}=x_{1} \cdot x_{3}$
0	0	0
0	1	0
1	0	0
1	1	1

x_{2}	x_{3}	$f_{3}=x_{2} \cdot \bar{x}_{3}$
0	0	0
0	1	0
1	0	1
1	1	0

f_{1}	f_{2}	$f_{4}=f_{1}+f_{2}=x_{1} \overline{x_{2}}+x_{1} \cdot x_{3}$
0	0	0
0	1	1
1	0	1

1	1	1

$$
\begin{array}{|l|l|l|}
\hline \mathrm{f}_{4} & \mathrm{f}_{3} & f=f_{4}+f_{3}=x_{1} \overline{x_{2}}+x_{1} \cdot x_{3}+x_{2} \cdot \overline{x_{3}} \\
\hline
\end{array}
$$

0	0	0
0	1	1
1	0	1

3.45 Consider the function $f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(2,3,4,6,7)$. Show how it can be realized using two two-input LUTs. As shown in Figure 3.39, give the truth table implemented in each LUT. You do not need to show the wires in the FPGA.3.45

Solution:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(2,3,4,6,7)=\overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}}+\overline{x_{1}} \cdot x_{2} \cdot x_{3}+x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}}+x_{1} \cdot x_{2} \cdot \overline{x_{3}}+x_{1} \cdot x_{2} \cdot x_{3} \\
& f=\overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}}+\overline{x_{1}} \cdot x_{2} \cdot x_{3}+x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}}+x_{1} \cdot x_{2} \cdot \overline{x_{3}}+x_{1} \cdot x_{2} \cdot \overline{x_{3}}+x_{1} \cdot x_{2} \cdot x_{3} \\
& f=\overline{x_{1}} \cdot x_{2}\left(\overline{x_{3}}+x_{3}\right)+x_{1} \cdot \overline{x_{3}}\left(\overline{x_{2}}+x_{2}\right)+x_{1} \cdot x_{2}\left(\overline{x_{3}}+x_{3}\right) \\
& f=\overline{x_{1}} \cdot x_{2} \cdot 1+x_{1} \cdot \overline{x_{3}} \cdot 1+x_{1} \cdot x_{2} \cdot 1 \\
& f=\overline{x_{1}} \cdot x_{2}+x_{1} \cdot x_{2}+x_{1} \cdot \bar{x}_{3} \\
& f=\left(\overline{x_{1}}+x_{1}\right) \cdot x_{2}+x_{1} \cdot \overline{x_{3}} \\
& f=x_{2}+x_{1} \cdot \overline{x_{3}}
\end{aligned}
$$

x_{1}	x_{3}	$f_{1}=x_{1} \cdot \overline{x_{3}}$
0	0	0
0	1	0
1	0	1
1	1	0

f_{1}	x_{2}	$f=f_{1}+x_{2}=x_{1} \cdot \overline{x_{3}}+x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

3.49 Assume that a gate array contains the type of logic cell depicted in Figure P3.9. The inputs $i n 1, \ldots, i m$ can be connected to either 1 or 0 , or to any logic signal.
(a) Show how the logic cell can be used to realize $f=x_{1} x_{2}+x_{3}$.
(b) Show how the logic cell can be used to realize $f=x_{1} x_{3}+x_{2} x_{3}$.

Figure P3.9 A gate-array logic cell.
Solution:
(a)

$$
f=x_{1} \cdot x_{2}+x_{3}=x_{1} \cdot x_{2} \cdot \overline{x_{3}}+1 \cdot x_{3}
$$

Again

(b)

$$
f=x_{1} \cdot x_{3}+x_{2} \cdot x_{3}=\left(x_{1}+x_{2}\right) \cdot x_{3}+0 \cdot \overline{x_{3}}
$$

two inputs

[^0]
3.50 Assume that a gate array exists in which the logic cell used is a three-input NAND gate. The Inputs to each NAND gate can be connected to either 1 or 0 , or to any logic signal. Show how the following logic functions can be realized in the gate array. (Hint: use DeMorgan's theorem.)
(a) $f=x_{1} \cdot x_{2}+x_{3}$
(b) $f=x_{1} x_{2} x_{4}+x_{2} x_{3} \overline{x_{4}}+\overline{x_{1}}$

Solution:
(a)
$f=x_{1} \cdot x_{2}+x_{3}$
$\bar{f}=\overline{x_{1} \cdot x_{2}+x_{3}}=\overline{x_{1} \cdot x_{2}} \cdot \overline{x_{3}}=P \cdot Q$
$f=\overline{x_{1} \cdot x_{2}} \cdot \overline{x_{3}}$
Here P is output of a 3 input NAND gate with inouts: $1, \mathrm{x}_{1}, \mathrm{x}_{2}$ And Q is output of a 3 input NAND gate with inouts: $1,1, x_{3}$

3.54 What logic gate is realized by the circuit in Figure P3.10? Does this circuit suffer from any major drawbacks?

Figure P3.10 Circuit for problem 3.54.

Solution:
The circuit in Figure P3.10 is a two-input XOR gate. Since NMOS transistors are used only to pass logic 0 and PMOS transistors are used only to pass logic 1 , the circuit does not suffer from any major drawbacks.
3.55 What logic gate is realized by the circuit in Figure P3.11? Does this circuit suffer from any major drawbacks?

Figure P3.11 Circuit for problem 3.55.
Solution: The circuit in Figure P3.11 is a two-input XOR gate. The circuit has two major drawbacks.

1. when both the inputs are 0 , the PMOS transistor must drive f to 0 , resulting in $\mathrm{f}=\mathrm{Vt}$ volts.
2. when $\mathrm{V}_{\mathrm{x} 1}=1$ and $\mathrm{V}_{\mathrm{x} 2}=0$, the NMOS transistor must drive the output high, resulting $\mathrm{f}=\mathrm{V}_{\mathrm{DD}}-\mathrm{Vt}$

[^0]: Again

