6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the multiplexer based logic block illustrated in Figure P6.1. Show how the function $f=w_{2} \overline{w_{3}}+w_{1} w_{3}+\overline{w_{2}} w_{3}$ can be implemented using only one Act 1 logic block.

Figure P6.1 The Actel Act 1 logic block.

Solution:

$$
\begin{aligned}
& f=w_{2} \overline{w_{3}}+w_{1} w_{3}+\overline{w_{2}} w_{3} \\
& \Rightarrow f=\overline{w_{3}}\left(w_{2}\right)+w_{3}\left(w_{1}+\overline{w_{2}}\right)
\end{aligned}
$$

6.17 Show how the function $f=w_{1} \overline{w_{3}}+\overline{w_{1}} w_{3}+w_{2} \overline{w_{3}}+w_{1} \overline{w_{2}}$ can be realized using Act 1 logic blocks. Note that there are no NOT gates in the chip; hence complements of signals have to be generated using the multiplexers in the logic block.

Solution:

Using Shannon expansion in term of w_{3}

$$
\begin{aligned}
& f=w_{1} \overline{w_{3}}+\overline{w_{1}} w_{3}+w_{2} \overline{w_{3}}+w_{1} \overline{w_{2}} \\
& \Rightarrow f=\overline{w_{3}}\left(w_{1}+w_{2}\right)+w_{3}\left(\overline{w_{1}}+w_{1} \overline{w_{2}}\right) \\
& \Rightarrow f=\overline{w_{3}}\left(w_{1}+\overline{w_{1}} w_{2}\right)+w_{3}\left(\overline{w_{1}}+w_{1} \overline{w_{2}}\right)
\end{aligned}
$$

6.18 Consider the VHDL code in Figure P6.2. What type of circuit does the code represent? Comment on whether or not the style of code used is a good choice for the circuit that it represents.
Solution:
The code in Figure P6.2 is a 2-to-4 decoder with an enable input. It is not a good style for defining this decoder. The code is not easy to read. It is better to use the style in Figures 6.30 or 6.46 .
6.21 Using a selected signal assignment, write VHDL code for a 4-to-2 binary encoder.

Solution:

ENTITY encoder_4to2 IS
PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

> y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0));

END encoder_4to2;
ARCHITECTURE Behavior OF encoder_4to2 IS
BEGIN
WITH w SELECT
y <="00" WHEN "0001",
"01" WHEN "0001",
"10" WHEN "0001",
"11" WHEN OTHERS;
END Behavior;
6.29 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7 -segment display in Figure 6.25.

Solution:

The truth table of 7-segment display is shown below:

w_{3}	w_{2}	w_{1}	w_{0}	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

$$
c\left(w_{3}, w_{2}, w_{1}, w_{0}\right)=\sum m(0,1,3,4,5,6,7,8,9)+d(10,11,12,13,14,15,16)
$$

$c=\overline{w_{1}}+w_{0}+w_{2}$
6.31 Design a shifter circuit, similar to the one in Figure 6.55, which can shift a four-bit input vector, $W=w_{3} w_{2} w_{1} w_{0}$, one bit-position to the right when the control signal Right is equal to 1 , and one bit-position to the left when the control signal Left is equal to 1. When Right $=$ Left $=0$, the output of the circuit should be the same as the input vector. Assume that the condition Right $=$ Left $=1$ will never occur.
Solution: let, S_{1} select= right shift and S_{0} select=left shift

s_{1}	$\mathrm{~s}_{0}$	y_{3}	y_{2}	y_{1}	y_{0}
0	0	w_{3}	w_{2}	w_{1}	w_{0}
0	1	0	w_{3}	w_{2}	w_{1}
1	0	w_{2}	w_{1}	w_{0}	0
1	1	X	X	X	X

6.36 Figure 6.21 shows a block diagram of a ROM.Acircuit that implements a small ROM, with four rows and four columns, is depicted in Figure P6.3. Each X in the figure represents a switch that determines whether the ROM produces a 1 or 0 when that location is read.
(a) Show how a switch (X) can be realized using a single NMOS transistor.
(b) Draw the complete 4×4 ROM circuit, using your switches from part (a). The ROM should be programmed to store the bits 0101 in row 0 (the top row), 1010 in row 1, 1100 in row 2, and 0011 in row 3 (the bottom row).
(c) Show how each (X) can be implemented as a programmable switch (as opposed to providing either a 1 or 0 permanently), using an EEPROM cell as shown in Figure 3.64. Briefly describe how the storage cell is used.
Solution:
(a) Each ROM location that should store a 1 requires no circuitry, because the pull-up resistor provides the default value of 1 . Each location that store a 0 has the following cell

If a location should store a 1 , the corresponding EEPROM transistor is programmed to be turned off. But if the location should store 0, the EEPROM transistor is left unprogrammed.
6.37 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem 6.36 that realizes the logic functions
$d_{3}=\overline{a_{0} \oplus a_{1}}$
$d_{2}=a_{0} \oplus a_{1}$
$d_{1}=a_{0} a_{1}$
$d_{0}=a_{0}+a_{1}$
Solution:

